Heart Transplant Update

David Chang, MD

Associate Director, Post Graduate In Heart Failure and Heart Transplantation

> Cedars Sinai Smidt Heart Institute Los Angeles, California

> > 3/16/2019

cedars-sinai.edu

Relevant Financial Relationship Disclosure Statement

I will discuss off label use and/or investigational medications in my presentation

I have relationship(s) to disclose: Clinical Trial Principal Investigator (Amgen-GALACTIC HF, Biocardia-CardiAMP, Mesoblast-DREAM HF) and Stock Interest (Abbott, Abbvie, Repligen, Portola, Amarin)

Lecture Overview:

- Historical perspective of heart transplantation
- Statistics and survival post heart transplant
- Immunologic compatibility
- Post heart transplant complications
- Conventional and novel methods to detect rejection
- Advances in immunosuppression strategies
- Future directions

Heart Transplantation

Over 50 years since the first human heart transplant

- **1967** First human heart transplant performed by Christiaan Barnard in South Africa
- 1968 Norman Shumway performed first adult human transplant in United States
- 1976 Cyclosporine discovered, radically improving survival by reducing rates of rejection

The Evolution of Immunosuppressive Therapies

1960's Corticosteroids Polyclonal antibodies Azathioprine 1980's Cyclosporine Monoclonal antibodies 1990's **Tacrolimus** Mycophenolate mofetil Sirolimus **IL2R** Blockade 2000's **Everolimus**

Pathways of maintenance immunosuppression

Journal of Pediatric Surgery, Vol 38, No 9 (September), 2003: pp 1275-1280

COS CEDARS-SINAI.

Categories of Immunosuppressants:

- •Calcineurin Inhibitors
 - •Tacrolimus
 - •Cyclosporin
- •Inhibitors of Purine Metabolism
 - •Mycophenolate Mofetil
 - Azathioprine
- Proliferation Inhibitors
 - •Rapamycin/Sirolimus
 - Everolimus

Number of Adult and Pediatric Heart Transplants by Year and Location

Adult Heart Transplants Kaplan-Meier Survival by Era (Transplants: January 1982 – June 2016)

Cedars-Sinai Heart Transplant Program

- The Cedars-Sinai Heart Transplant Program began in December 1988 and as of December 2018, more than 1,600 heart transplant surgeries have been performed.
- In the past 5 years:
 - We have broken the prior U.S. record every year in the annual number of adult heart transplant surgeries performed, averaging more than 120 heart transplant surgeries per year.
 - Overall 1-year survival of 91% surpasses the national average.

SRTR Heart Transplant Outcomes (January 2019)

Table C12D. Adult (18+) 1-year patient survival (deceased donor graft recipients) Single organ transplants performed between 07/01/2015 and 12/31/2017 Retransplants excluded

	CACS	U.S.
Number of transplants evaluated	240	6,144
Estimated probability of surviving at 1 year		
(unadjusted for patient and donor characteristics)	<mark>91.99%</mark>	91.79%

Table C13D. Adult (18+) <mark>3-year patient survival</mark> (deceased donor graft recipients) Single organ transplants performed between 01/01/2013 and 06/30/2015 Retransplants excluded

	CACS	U.S.
Number of transplants evaluated	249	5,040
Estimated probability of surviving at 3 years		
(unadjusted for patient and donor characteristics)	<mark>86.75%</mark>	85.22%

SRTR Heart Transplant Outcomes (January 2019)

Table C18. Multi-organ transplant patient survival: 07/01/2015 - 12/31/2017 Adult (18+) Transplants

First-Year Outcomes

<u>Transplant</u>

Type Transplants Performed		Patient Deaths		Estimated Patient Survival		
	<u>CACS-TX1</u>	<u>USA</u>	<u>CACS-TX1</u>	<u>USA</u>	CACS-TX1	<u>USA</u>
Heart-Lung	1	49	0	8	100.0%	82.9%
Kidney-Heart	35	397	2	35	94.3%	90.8%
Liver-Heart	6	62	0	5	100.0%	91.4%

Immunologic Compatibility:

- Crossmatch:
 - Virtual
 - Prospective
 - Retrospective

Patel R, Terasaki PI. Significance of the positive crossmatch test in kidney transplantation. N Engl J Med 1969; 280:735–739.

<u>Mulley WR, Kanellis J</u>. Understanding crossmatch testing in organ transplantation. *Nephrology 2010.*

Panel Reactive Antibody (PRA)

- •The serum of a transplant candidate is tested against a "panel" of HLA antigens that is representative of the HLA makeup of the donor population.
- The result of the PRA test is reported as a percentage.
- The "percent PRA" theoretically means that the candidate has HLA antibodies to about that percentage of the potential donor population.

Risk Factor ^a	Hazard Ratio	95% Confidence Interval	p Value
PRA (continuous variable)	1.005	1.002–1.009	< 0.001
PRA 1%-10% ^b	1.17	0.96-1.42	0.12
PRA 11%-25% ^b	0.94	0.99-1.00	0.73
PRA >25% ^b	1.4	1.09–1.77	0.007

Fig 3. Kaplan–Meier estimates of mortality stratified by panel-reactive antibody (PRA) $\leq 25\%$ versus panel-reactive antibody > 25%.

CEDARS-SINAL

<u>Nwakanma NU, et al</u>. Influence of pre-transplant PRA on outcomes in 8,160 heart transplant recipients in recent era. *Ann Thorac Surg 2007*.

Table 2. Multivariate Cox Proportional Hazard RegressionAnalyses of Patient Survival

Calculated PRA (cPRA)

- •The cPRA is the percentage of donor hearts in a given population to which a heart transplant candidate has significant anti-HLA antibodies.
- •The corresponding antigens to these antibodies are deemed unacceptable. Those potential donors with these unacceptable antigens are automatically turned away.
- •The threshold to determine when an anti-HLA antibody is significant is defined by the heart transplant program and is usually dependent on the strength of the antibody.
- •The higher the cPRA, the harder it is to find a suitable donor (eg 70% cPRA means that 70% of donors will be automatically turned away).

Post-Transplant Complications

- Rejection Infection
 - Cardiac Allograft Vasculopathy (CAV)
 - Hypertension
 - Nephropathy
 - Malignancy

Rejection

Signs and symptoms

 Atrial Fibrillation/Atrial Flutter
 CHF signs and symptoms
 Systolic dysfunction/Echocardiogram-Stat
 New heart block and or bradycardia

•Cellular rejection: leukocytes and necrosis

Grade 0: no rejection
Grade 1R: mild rejection
Grade 2R: moderate rejection
Grade 3R: severe rejection

Antibody-Mediated Rejection (AMR)

>pAMR 0

>pAMR 1 (H+), pAMR 1 (I+)

>pAMR 2

⊳pAMR 3

Endomyocardial Biopsy (EMB)

- Currently, the gold standard for rejection surveillance is the invasive endomyocardial biopsy.
- Among expert pathologist, there is only 67% concordance to identify rejection in the heart biopsy.
- Therefore, there is an unmet need for additional test(s) to detect heart transplant rejection

Common Histological Artifacts that Mimic Rejection

Old biopsy site

- Common for bioptome to be guided to same site as previous biopsies
- Myocytes in disarray
- If recent: B and T cells seen

CEDARS-SINAL®

Infection

 CMV or Toxoplasma will show lymphocytic infiltrates

"Quilty effect"

- First described in 1981 by Billingham et al.
- Occurs in 10% to 20% of EMBs
- Lymphocytic lesion with B and T cell infiltrates
- Considered by some to be a side-effect of cyclosporine

Novel Means to Detect Rejection in Heart Transplantation

- Molecular paradigm in diagnosis of rejection
 Intragraft mRNA transcripts
- Donor-derived cell free DNA

Intragraft mRNA Assessment of Rejection

- Molecular phenotyping offers the possibility for increased accuracy in diagnosing and treating pathological states
- Traditional histological methods are often subjective and results are qualitative
- By relating gene expression to disease states, a system can be created to diagnose pathologies
- Halloran et al at the University of Alberta devised such a system for identifying rejection and allograft injury in transplant biopsy samples: The Molecular Microscope Diagnostic System (MMDx)

Halloran P et al. Nat Rev Nephrol 2016;12:534-48

How Molecular Analysis Works

Nature Reviews | Nephrology

- Microarrays analyze mRNA in biopsy samples suspended in a RNA reagent e.g. RNALater
- Machine learning builds algorithms that assign probability of disease state: Known as "classifiers"
- A "classifier" algorithm uses multiple gene-expression values in contrast to traditional simple gene sets
- New biopsy results are compared to 50 nearest neighbors in a reference set

CEDARS-SINAI.

The Molecular Landscape of Rejection: Using rejection associated transcripts as classifiers

TCMR Landscape

- CTLA4 signaling in cytotoxic T cell
- T cell receptor signaling
- Dendritic cell differentiation
- IFNγ-mediated effects

AMR Landscape

- NK cell signaling
- Endothelium activation
- Leukocyte-EC interaction
- IFNγ-mediated effects

Halloran P et al. Nat Rev Nephrol 2016;12:534-48

Archetype Analysis

Archetype analysis estimates probability of:

- No rejection
- TCMR
- ABMR

in a single EMB bite

Archetype analysis is an unsupervised method that assigns each biopsy a score based on its similarity to cases in the reference set: scores add up to 1.0

Comparing the A1,2,3 Archetypes for kidney, heart, and lung as estimated by expression of rejection-associated transcripts (RATs) A1: no rejection; A2:TCMR; A3: ABMR (or ABMR-like)

• A1=no rejection; A2=TCMR or TCMR-like; A3=ABMR or ABMR-like

Figure 1. Archetype analysis based on expression of 453 kidney-derived rejection-associated transcripts (RATs) separated biopsies with non-rejection (A1), TCMR-like (A2), and ABMR-like (A3) features. 1208 kidney, 331 heart, and 58 transbronchial lung biopsies were used.

The INTERHEART Study

- Prospective validation of the MMDx in heart transplantation
- Assign molecular scores (probability) of T cell mediated rejection and antibody mediated rejection in heart transplant biopsies, in a reference set of 200 biopsies
- Create molecular classifiers that predict antibody mediated and T cell mediated rejection

Examples of Heart Transplant Endomyocardial Biopsy MMDx-Heart Reports

DNA the Molecule of Life

chromosomes

gene

cell

Cell-Free DNA (cfDNA) is Found in Circulating Blood

- cfDNA is released from healthy, inflamed or diseased tissue from cells undergoing apoptosis or necrosis.
- cfDNA can be extracted from a blood sample and analyzed.
 - Steady state level due to basal rate of cellular turnover
 - 6 ng/mL plasma (1000 genomes/mL)
 - Higher levels with increased cell damage

。 Trauma

CEDARS-SINAL

Crowley, E. *et al.* (2013) *Nat. Rev. Clin. Oncol*.doi:10.1038/nrclinonc.2013.110

Transplantation: A New Application for cfDNA

Donor-derived cell-free DNA (dd-cfDNA) may be useful for non-invasive surveillance of allograft status

DART Study Design

- •The Circulating Donor-Derived Cell-Free <u>D</u>NA (dd-cfDNA) in Blood for Diagnosing <u>A</u>cute <u>R</u>ejection in Kidney <u>T</u>ransplant Recipients (DART)
- •14 centers, 384 patients

 $_{\odot}\mbox{Enrolled}$ at time of transplant and followed for 2 years

OR

 Enroll at time of clinical suspicion of rejection; blood draw at time of enrollment and 2 years follow-up

•Allograft rejection reference cases met biopsy-based, histologic Banff WG 2013 criteria for acute or chronic active ABMR

Bloom RD et al. J Am Soc Nephrol. 2017. doi:10.1681/ASN.2016091034.

dd-cfDNA Discriminates Active Rejection from No Active Rejection in Clinical-Suspicion Setting

dd-cfDNA

Median 5.3-fold higher in active rejection vs no active rejection. Receiver-Operator characteristics curve shows dd-cfDNA discriminates active rejection

Serum creatinine

Does not discriminate active rejection from no active rejection.

- Active rejection = Acute, active ABMR; Chronic/active ABMR; and TCMR, n=27 samples from 27 patients
- No active rejection, n=80 samples from 75 patients

CEDARS-SINAL®

dd-cfDNA Provides Stratification With Higher Probability of Active Rejection at 1% dd-cfDNA Cutoff

Performance metric	AlloSure test performance at 1% threshold
ROC/AUC	0.74 (95% CI 0.61-0.86)
Sensitivity	85%
Specificity	59%
NPV	84%
PPV	61%

Bloom RD et al. J Am Soc Nephrol. 2017. doi:10.1681/ASN.2016091034

Example Case with Longitudinal Collection in DART

Bromberg et al., J Assoc Lab Med, 2017

Study Design: dd-cfDNA in Heart Transplantation

CEDARS-SINAI.

Grskovic M, Kobashigawa J, Am J Transplant. 2015; 15 (suppl 3):122.

dd-cfDNA results from the CARGO II Study

Increased dd-cfDNA Correlates with Biopsy-Proven Rejection in Heart Transplant Recipients

dd-cfDNA from quiescent (Q) and rejection (R) samples, expressed as percent ddcfDNA in recipient.

Mean Rejection group is 1.9fold higher than mean Quiescent group

Grskovic M, Kobashigawa J, Am J Transplant. 2015; 15 (suppl 3):122.

dd-cfDNA is Validated to Detect Rejection, Combined ACR and AMR

- Samples from recipients with either ACR or AMR had elevated dd-cfDNA compared to no rejection
- Mixed rejection (biopsy diagnosed with both ACR and AMR, n=2) had the highest dd-cfDNA

- No Rejection vs All Rejection, p=0.001
- No Rejection vs ACR, p=0.05
- No Rejection vs AMR, p=0.047
- ACR=Grade 2R and Grade 3R
 - Grades OR and 1R are in the No Rejection group
- AMR=pAMR1 and pAMR2

Kobashigawa, presented at the ISHLT Scientific Sessions 2018

dd-cfDNA is Validated to Detect AMR

- AMR (combined pAMR1 and pAMR2) vs No AMR, p=0.047
- Biopsy-negative for AMR: 0.07%
- Median pAMR1 & pAMR2: 0.22%, more than three-fold higher

These data suggest use of a 0.2% threshold for discrimination of AMR from No Rejection.

Kobashigawa, presented at the ISHLT Scientific Sessions 2018

Novel testing to detect rejection

- There is an unmet need in transplantation to create an objective diagnostic test for allograft rejection
- The pathology reads of EMB rejection are not consistent
- Gene expression profiling and dd-cfDNA appear to be reliable non-invasive methods to detect rejection
- The intragraft mRNA transcripts (MMDx) may pave the way to a new gold standard for rejection and even improve our understanding of the pathology of rejection

Induction Immunosuppression: To induce or not to induce?

Common indications

- High risk of acute rejection.
- Impaired renal function (renal sparing protocol).

Common agents

- •rATG = Thymoglobulin.
- Basiliximab = Simulect

Safety concerns

- Infection.
- Malignancy.

Frequency of use

- About 50% of patients.
- 30% Simulect and 20% ATG.

CEDARS-SINAL®

Prevention of Complement Activation and Antibody Development

- Many patients demonstrate elevated levels of antibodies which represent a barrier to heart transplantation.
- Antibody-mediated allograft injury is predominantly mediated through complement activation.
- Complement inhibition may allow highly sensitized patients to successfully undergo heart transplantation.
- Eculizumab is a potentially promising agent which through terminal complement inhibition may allow transplantation across an antibody barrier and may even promote accommodation.

Eculizumab

- Eculizumab is a humanized monoclonal antibody that binds to and subsequently prevents activation of complement component C5 by the amplified C3 convertase molecules.
- Eculizumab is approved by the US Food and Drug Administration for treating paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (HUS).

•Accommodation is the absence of humoral-mediated injury and continued function of a graft, despite the presence of anti-donor antibodies in the circulation.

•The difference between accommodation and antibody mediated rejection (AMR) appears to be the level of complement activation¹.

¹Williams et al. Transplantation. 78(10):1471-1478, November 27, 2004.

Activation of Complement in AMR and Accommodation

- In an experimental model of cardiac xenotransplantation¹, grafts with AMR showed deposition of all complement components, including C4d and C5b-C9 MAC.
- •However, xenografts demonstrating accommodation showed C4d deposits only.
- •As eculizumab has the ability to inhibit C5b-C9 MAC and C5a generation, it could potentially act as a strong promoter of accommodation.

CEDARS-SINAL®

<u>D</u>e-novo <u>U</u>se of <u>E</u>culizumab in Highly Sensitized Patients Undergoing Cardiac <u>T</u>ransplantation (DUET Trial)

- Pilot study using eculizumab immediately after heart transplant for the highly sensitized patient (mean cPRA = 83.8 ± 22.6, n=14).
- •Study endpoints:

Assess efficacy to prevent post-transplant antibodies and AMR.

- •Eculizumab Protocol:
 - oEculizumab
 - Day 0: 1200 mg / Day 1,7,14,21: 900 mg / Day 28,42,56: 1200 mg
 - Thymoglobulin 1.5 mg/kg x 5days followed by IVIg 1 gm/kg x 2days

Patel J - unpublished data, ongoing trial

Demographics (N=14)

Mean recipient Age, Year ± SD	49.5 ± 12.3
Mean Donor Age, Years ± SD	31.9 ± 11.4
BMI, Mean ± SD	25.3 ± 3.7
Female (%)	85.7% (12/14)
Previous Pregnancy in Females (%)	91.7% (11/12)
Ischemic Time, Mean Mins ± SD	130.4 ± 52.1
Primary Reason for Tx, Underlying Diagnosis of CAD (%)	14.3% (2/14)
Status 1 at Transplant (%)	100.0% (14/14)
CMV Mismatch (%)	14.3% (2/14)
Diabetes Mellitus (%)	42.9% (6/14)
Treated Hypertension (%)	57.1% (8/14)
Prior Blood Transfusion (%)	66.7% (8/12)
Pre-Transplant cPRA, Mean ± SD	83.8 ± 22.6
Pre-Transplant Creatinine Mean ± SD	1.5 ± 0.6
Insertion of MCS Device	50.0% (7/14)

Prospective Donor-Specific Crossmatch Results at Transplant

Crossmatch Type	Results, N=14
T-Flow Cytometry Crossmatch	93.1 \pm 122.8 MCS
B-Flow Cytometry Crossmatch	228.8 \pm 120.6 MCS
T-Cell Complement-Dependent Cytotoxicity Crossmatch	All negative
B-Cell Complement-Dependent Cytotoxicity Crossmatch	All negative

Positive T-Flow >50 MCS Positive B-Flow >100 MCS

Preliminary Outcomes

Endpoints	N=14
1-Year Actuarial Survival	92.8%
1-Year Actuarial Freedom from Cellular Rejection (ISHLT ≥2R)	100.0%
1-Year Actuarial Freedom from Antibody-Mediated Rejection (AMR ≥2)	76.8%
1-Year Actuarial Freedom from Any Treated Rejection	86.9%
Average 6-Month Left Ventricular Ejection Fraction (%)*	64.4 ± 8.1
% of Patients with DSA at 1 Month Post-Transplant	71.4% (10/14)
1-Year Freedom from Treated Infection	58.6%

* No patient with reduced LVEF

Patel J - unpublished data, ongoing trial

Current Investigations and Future Directions:

- Clinical trials in heart transplantation
 - Optimal testing for heart transplant rejection (Gene expression profile with Allomap, role of Interheart, cellfree DNA, microRNA)
 - Anti-Thymocyte Globulin (rATG) induction therapy compared to standard triple drug therapy in immunologically low risk patients
 - Single center, currently enrolling
 - Tocilizumab with or without standard triple drug therapy
 - Multi-center, currently enrolling
- Possible future trials
 - · Optimization of induction therapies for heart transpant
 - IDES induction therapy in highly sensitized patients
 - C1 esterase inhibition in highly sensitized patients
 - Mechanistic studies and optimal treatment strategies for treatment of primary graft dysfunction (early graft loss)
 - Mechanistic studies to understand cardiac allograft vasculopathy (late graft loss)
 - Expansion of the repertoire of agents for maintenance immunosuppression (moving beyond T cell specific therapies)
 - Developing immunotherapies in oncology treatment may yield specific/targeted immunosuppression (to minimize non-cardiac complications of solid organ transplant)

Thank You