Stroke Update: New Tricks for an Old Dogma

Patrick D. Lyden, MD, FAAN, FANA, FAHA

Professor, Neurology Louis and Carmen Warschaw Chair in Neurological Research

Presenter Disclosure Information

Patrick D. Lyden New Tricks for an Old Dogma

NINDS R01 NS075930 (PI)

NINDS

U01 NS088312 (PI)

NINDS U24 NS113452 (PI)

FINANCIAL DISCLOSURE:

I have no relationship with any company associated with thrombolysis or thrombectomy

UNLABELED/UNAPPROVED USES DISCLOSURE: I will describe uses of a number of drugs based on dogma and very little science.

Patrick D. Lyden

Editor

Thrombolytic Therapy

for Acute Stroke

CBF in pathological states

Strandgaard et al Autoregulation of Brain Circulation in Severe Arterial Hypertension Br Med J 1973 1(5852):507-510 Beyond Mismatch Kidwell et al Stroke 34:2729-2735 2003

J Clin Pathol Suppl (R Coll Pathol). 1977; 11: 149-154.

After Occlusion

That occlusion will never open

Recanalization Studies Recanalizers

Incidence (95% CI) I_squared

Partial or complete

Any occlusion	23	667/1927
M1	21	342/942
M2-M3	16	189/369
ICA	16	53/328
Basilar artery	5	8/49

33% (27, 40)	89%
35% (28, 42)	80%
52% (39, 64)	77%
13% (6, 22)	67%
13% (0, 35)	49%

Stroke. 2016;47:2409–2412

Acta neuropath. (Berlin) 12, 1-15, 1969

Thrombectomy

IA STUDY POPULATION

Slide credit: M. Goyal ESCAPE Trial Presentation

Meta-analysis HERMES Collaboration, Goyal et al. Lancet 2016;387:1723-31

В

Ineligible for alteplase

	Intervention population	Control population	Adjusted rate ratio (95% CI)	Adjusted odds ratio (95% Cl)
Symptomatic intracranial haemorrhage	4·4% (28/634)	4·3% (28/653)	1·07 (0·62−1·80); p=0·81	1·07 (0·62–1·84); p=0·81
Parenchymal haematoma type 2	5.1% (32/629)	5.3% (34/641)	1·04 (0·64–1·69); p=0·88	1·04 (0·63−1·72); p=0·88
Mortality	15.3% (97/633)	18·9% (122/646)	0·82 (0·62–1·08); p=0·15	0·73 (0·47–1·13); p=0·16

Data show the proportion of patients with outcome (n/N), unless othe

Table 4: Safety outcomes at 90 days

HERMES Saver et al. JAMA. 2016;316:1279-1288

DAWN Nogueira et al. NEJM 2017 DOI: 10.1056/NEJMoa1706442

6-24 hours LKNW

DAWN Nogueira et al. NEJM 2017 DOI: 10.1056/NEJMoa1706442

DEFFUSE-3 Albers et al. NEJM 2018; 378:708-18

Novel Oral Anticoagulants

Expert Rev. Neurother. © Future Science Group (2012)

Dabigatran: Re-LY

NEJM 2009; 361:2342-52

Apixaban: AVERROES

NEJM 2011;364:806-17

Rocket AF

Effects of Non–Vitamin K Antagonist Oral Anticoagulants Versus Warfarin in Patients With Atrial Fibrillation and Valvular Heart Disease: A Systematic Review and Meta-Analysis, Volume: 6, Issue: 7, DOI: (10.1161/JAHA.117.005835)

					01	Outcome		
Trial	Interval	Agent	Patients Treated, N	Dead, n (%)	Poor, n (%)	Good, n (%)	Excellent, n (%)	
FISS	6 mo	HD nadroparin	102	13 (12.7)	32 (31.3)		57 (55.8)	
		LD nadroparin	101	17 (16.8)	36 (35.6)		48 (47.5)	
		Placebo	105	20 (19.0)			37 (35.2)	
IST	6 mo	HD heparin	4856	1103 (22 0)		8 (20.3)	824 (17.1)	
		LD heparin	4860			(19.6)	831 (17.3)	
		Control	9719			20.1)	1641 (17.0)	
TOAST	3 mo	Danaparoid				5.7)	317 (49.4)	
		Placebo				7)	298 (47.0)	
HAEST	3 mo						51 (22.8)	
							48 (21.3)	
		\checkmark					Favorable, n (%)	
TAIST	6						181 (38.4)	
						(51.0)	188 (38.3)	
					227	(46.2)	206 (42.5)	
					Unfavora	ble, n (%)	Favorable, n (%)	
FISS- bis	6 mo		.v		100	(40.8)	145 (59.2)	
			271		116	(42.8)	155 (57.2)	
		- vU	250		108	(43.2)	142 (56.8)	
TOPAS	3 mo	certoparin 3000/d	96		59	(61.5)	37 (38.5)	
		Certoparin 3000 BID	97		59	(60.8)	38 (39.2)	
		Certoparin 5000 BID	98		62	(63.3)	36 (36.7)	
		Certoparin 8000 BID	96		54	(56.3)	42 (43.7)	

TABLE 5. Outcomes: Trials of Emergent Anticoagulation

See Table 1 for doses of medication prescribed to HD and LD groups.

del Zoppo G. N Engl J Med 2006;354:553-555 Zhang et al. Trends inPharmacological Sci 2012;33:415

Neuronal Labeling of Thrombin

FITC-dextran Cy3-α-NeuN Cy5-α-thrombin

Mechanism of PAR-1 Activation

(Coughlin SR, 2005)

The NEXT Generation of Neurologic Treatments NIH-Network for Excellence in Neuroscience Clinical Trials

NeuroNEXT NN104 (RHAPSODY) Study

RHAPS

Results and Close-Out Meeting

January 22nd, 2018

Confidential

Randomized Subjects

Hemorrhage

		Dose						p-value
Hemorrhage Type at Day 30	Total	120 (N=12)	240 (N=16)	360 (N=6)	540 (N=9)	All 3K3A- APC (N=43)	Placebo (N=37)	(3K3A- APC vs. PBO)
Hemorrhage (>0 mL)	61 (76.3%)	8 (66.7%)	13 (81.3%)	3 (50.0%)	5 (55.6%)	29 (67.4%)	32 (86.5%)	0.05
(>0.06 mL)	49 (61.3%)	7 (58.3%)	11 (68.8%)	2 (33.3%)	4 (44.4%)	24 (55.8%)	25 (67.6%)	0.28
(>0.5 mL)	24 (30.0%)	4 (33.3%)	5 (31.3%)	0 (0.0%)	1 (11.1%)	10 (23.3%)	14 (37.8%)	0.16
(>1.8 mL)	13 (16.3%)	1 (8.3%)	2 (12.5%)	0 (0.0%)	1 (11.1%)	4 (9.3%)	9 (24.3%)	0.07
Microbleeds	15 (18.8%)	1 (8.3%)	2 (12.5%)	3 (50.0%)	1 (11.1%)	7 (16.3%)	8 (21.6%)	0.54
Total Hemorrhage Volume					0.8±2.1	2.1±5.8	0.07	

Hemorrhage

		Dose						
Hemorrhage Type at Day 30	Total	120 (N=12)	240 (N=16)	360 (N=6)	540 (N=9)	All 3K3A- APC (N=43)	Placebo (N=37)	(3K3A- APC vs. PBO)
Hemorrhage (>0 mL)	61 (76.3%)	8 (66.7%)	13 (81.3%)	3 (50.0%)	5 (55.6%)	29 (67.4%)	32 (86.5%)	0.05
(>1.8 mL)	13 (16.3%)	1 (8.3%)	2 (12.5%)	0 (0.0%)	1 (11.1%)	4 (9.3%)	9 (24.3%)	0.07
Total Hemorrhage Volume					0.8±2.1	2.1±5.8	0.07	

ARTS: Barreto, Alexandrov, Lyden, et al Stroke. 2012;43:00

tPA plus Argatroban 100mcg/kg Target PTT 1.75x

sICH in 3 (4.6%)

Early recanalization In 61%

High-Dose	1	3%	1 9 %	1 9 %	10%	23%	7%	10%
Arg+ rt-PA	(4)	(6)	(6)	(3)	(7)	(2)	(3)
Low-Dose	3%	27%	3%	17%	239	% 10%	17%	6
Arg + rt-PA	(1)	(8)	(1)	(5)	(7)	(3)	(5)	
rt DA alono	7%	14%	17%	17%		17% 10%	17%	
rt-PA alone	(2)	(4)	(5)	(5)		(5) (3)	(5)	
mRS	0	1	2	3		4 5	6	
IIIKS	•	-	-	5		- 5		

To be tested in upcoming MOST trial

"Truth does not change because it is, or is not, believed by a majority of the people."

Thank you

New Uses for Transcranial Doppler Monitoring

Intracranial Emboli Detection

- Detection of Patent Foramen Ovale
- Emboli Detection
- Intra-operative monitoring

High Intensity Transients (HIT)

Department of Neurology

•TCD superior to TTE with bubbles

Sensitivity 68% vs 47%
Di Tullio, Sacco et al. Stroke 1993;24:1020-1024

•Contrast TCD superior to contrast TEE

Sensitivity 75% vs 48% without Valsalva
Both 100% with Valsalva
Caputi, Carriero et al. J. Stroke Cerebrovascular Dis. 2009;18:343-348

•All 3 are somewhat operator dependent

25 patient studies8 positive for PFOOf those 8, 2 were NEGATIVE on TTEAll confirmed on angio

Emboli Detection

Department of Neurology

Department of Neurology Madani, Beletsky. Neurology 2011;77:744-750

Department of Neurology Stroke. 2005; 36: 971-975

Transcranial Doppler Microembolic Signal Monitoring is Useful in Diagnosis and Treatment of Carotid Artery Dissection: Two Case Reports

Journal of Neuroimaging Volume 17, Issue 4, pages 350-352, 4 SEP 2007

- •61 yo former pro bass fisherman
- •Several episodes dizzy, diplopia, all resolved
- •Most recent spell treated in ED with nitro paste and benadryl
- •PMD treated with steroids
- •3 days later returned to ED with same sx

°CT scan showed bilateral cerebellar strokes

•Referred to Cedars-Sinai urgently

- •3 months prior was seen for acute stroke: vertigo and hemi-body numbness
- •Transferred to a tertiary facility
- Added asa to his plavix
- •CTA said to show occluded left vertebral artery

30 HITS right PCA, none in the left

Department of Neurology

- •Since he was having HITS on ASA and Plavix we changed to prasugrel
- •TCD one week later showed 9 HITS so we added aggrenox
- •One month later, no sx but repeat TCD "artifact laden"
- •Two months later, repeat TCD: no HITS
- •One year after initial strokes, no HITS so we stopped aggrenox
- •Two years after stroke, still has occluded vert and low basilar flow:
- •No strokes

Thank You